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ABSTRACT 
 
In this paper a new approach will be introduced to identify pen-based digitizer devices based on handwritten samples 
used for biometric user authentication. This new method of digitizer identification based on their signal properties can 
also be seen as an influencing part in the new research area of so-called sensometrics. The goal of the work presented in 
this paper is to identify statistical features, derived from signals provided by pen-based digitizer tablets during the 
writing process, which allow identification, or at least group discrimination of different device types. Based on a 
database of a total of approximately 40,000 writing samples taken on 23 different pen digitizers, specific features for 
class discrimination will be chosen and a novel feature vector based classification system will be implemented and 
experimentally validated. The goal of our experimental validation is to study the class space that can be obtained, given 
a specific feature set, i.e. to which degree single tablets and/or groups of pen digitizers can be identified using our 
developed classification by a decision tree model. The results confirm that a group discrimination of devices can be 
achieved. By applying this new approach, the 23 different tablets from our database can be discriminated in 19 output 
groups.  
 

1. Motivation 
Biometrics has become a household word and now sensometrics is also gaining increasing importance. The word 
sensometrics has its roots in the Latin word sensere, which means “to feel with one’s senses”. The word sensor derives 
from the same origin. Sensometrics in itself basically refers to mathematical and statistical methods for the analysis of 
the sensory and consumer science and preference data [1]. We now introduce sensometrics in the field of computer 
science and digital multimedia signal processing. We define sensometrics as the application of methods for the analysis 
and determination of a particular sensor (device) an original digital sample is sampled with, whereby the actual context 
in which the original sampling has been performed can vary. For example, for identifying digital cameras, any 
photographic image can be taken into account, whereas for identifying pen digitizer, sensors for capturing handwriting 
samples such as signatures can be analyzed.  
 
At least two main applications for sensometrics can be identified today: forensics and biometrics. While forensics refers 
to the posterior detection and proofing of tracks entities left behind, which generally plays a role in a criminalistic 
context where evidence is needed in court, biometrics is the on-line identification and verification of an individual. 
Instead of identifying a person by external information such as user knowledge (passwords, PINs), a physical key, 
smartcards or special token, which can be lost, stolen or handed over, a biometric system identifies a person itself based 
on its given characteristics. The advantage of biometric user authentication is the unique and reliable identification and 
verification of a human being’s identity based on his/her individual biometrical attributes such as speech and 
handwriting as behavioral-based modalities and fingerprint, face, iris, retina, or hand geometry as physiological 
modalities. However, the accuracy of biometric methods depends on a number of system parameters, one important 
aspect here is sensor characteristics. For the particular modality of online handwriting, it has been shown recently, that 
the recognition performance may vary significantly for different handwriting tablets [2]. Furthermore, integrity of 
biometric reference data is an important aspect in authentication system design. Here, one of the important aspects is the 
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question whether or not stored reference data originates from a specific sensor. For both aspects, the application of 
sensometrics in biometric recognition systems may enable the detection and validation of the original sensor type in the 
future and may improve the level of security in infrastructures and applications. Therefore, sensometrics connects 
biometrics and forensics. 
 
Also, regarding the increasing demand of mobile multimedia devices, identifying pen digitizers can be of much benefit 
in order to assure a higher security depending on the corresponding applications. Handwriting, especially the signature, 
seems to be one of the most acceptable and reliable method to easily provide identities by biometrics even in the digital 
age, e.g. on pen-based mobile devices. One idea is to additionally provide information about the used device. For 
example, regarding mobile payment, identifying not only the signature but also the used mobile device as a double 
check of the person could increase the security significantly. 
 
There are already approaches existing for categories of sensors other than pen digitizers such as for camera, microphone 
and printer identification. In [3] and [4] an approach of using the sensor’s pattern noise for digital camera identification 
is presented, which is extracted from the images using a wavelet-based denoising filter. Thus, they have been able to 
identify the correct camera out of 9 cameras, including two cameras of exactly the same model, without a single 
misclassification for several thousand images even from images that underwent subsequent JPEG compression and/or 
resizing. Further, with a forensic background, a concept for classifying and analyzing audio is presented in [5] in order 
to determine the microphone and the authenticity of a speaker’s environment. Therefore, a so-called Verifier-Tuple is 
introduced, which as a scalable method enables a detailed analysis and classification of every kind of media. An 
approach for identifying printer based on graylevel co-occurrence features is presented in [6], while another approach 
for the forensic identification of printers based on svm techniques is presented in [7]. An overview of methods for 
forensic characterization of devices in given in [8], where current forensic identification techniques for RF devices, 
printers, and cameras are presented and examined, and a generalization for the use with other devices is shown. In this 
paper, an approach for identifying pen digitizers based on the captured handwritten samples is provided. A feature 
vector based classification in form of a decision tree model is developed in order to differentiate pen digitizer devices. 
 
This paper is structured as follows. In section 2, an overview about the general biometric handwriting recognition, 
sampling and data representation is presented. Pen digitizers and their characteristics are briefly introduced in section 3. 
In section 4, our new concept for identifying pen digitizers will be explained. In section 5, the test environment and test 
set the will be outlined. Based on the presented concept in section 4, the used test methodology to identify a pen-
digitizer as well as the test goals will also described in this section 5. In section 6, the test results will be presented and 
discussed. The paper closes with a conclusion and an outlook in section 7. 

2. General Biometric Handwriting Recognition, Sampling and Data Representation 
The characteristics of the generation of a particular handwriting can be specified by the movement of the pen tip during 
the writing process. The main dimensions of this movement are pen position (horizontal/vertical), pen tip pressure and 
pen angles. Digitizer tablets provide sensor technology for the analog-digital conversion of these kinds of dynamics. 
Today, digitizer tablets are becoming increasingly common, mainly due to the wide distribution of pen-enabled 
computers such as PDA or Tablet PCs. These types of computers provide position information, represented as 
sequences of pen position points at discrete and continuous time intervals.  
 
This representation of continuous information is also denoted as sampled signals, and for the case of position signal, we 
use the notation x(t) for horizontal pen position signals and y(t) for vertical pen position signals. The spatial resolution 
of the pen position signal is a characteristic property of the digitizer tablet. The pen tip pressure signal is denoted as p(t). 
Finally, some digitizer tablets today provide pen azimuth signals, denoted as Θ(t), the orientation of the vertical 
projection of the pen onto the writing surface, similar to a compass, as well as pen altitude signals Φ(t), describing the 
angle of the pen above the writing surface. A classification of pen digitizers regarding their physical parameters will be 
provided in section 3. 
 
Figure 1 illustrates the process of sampling the handwriting position signals into sequences of discrete values. The goal 
of biometric user authentication using handwriting is the determination of similarities based on the application of these 
sampled signals. 
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Fig. 1. Digitized handwriting data sampling and representation (from [2]) 
 
The biometric user authentication process is generally structured as follows: Reference data is sampled within an 
enrollment and stored in a relevance database. For the case of handwriting biometrics, signals are sampled and analyzed 
for authentication. Authentication algorithms, as described for example in [9], [10], and [11], consider certain 
parameters of the reference storage. Well known algorithms are for example Dynamic time Warping (DTW), Hidden-
Markov-Models (HMM), Neural Networks, Multi Level Approaches, or BioHash [12]. Two different goals of 
authentication can be outlined. The first goal is the verification of one particular known user of the reference storage and 
refers to a comparison of one signal sampling to one particular reference storage sampling (1:1 comparison). The 
second goal is the identification of a particular not known user which indicates a comparison of one particular signal 
sampling to n reference storage samplings (1:n comparison), whereby n denotes the overall number of subjects actually 
enrolled to the given system. Depending on the desired authentication mode, the system parameters may change. 
 
In order to provide a sufficient measurement quantity for evaluating biometric user authentication algorithms, so-called 
semantics are needed. Semantics refers to different user specific writing content such as e.g. signature, PIN, symbols, 
and phrases [2]. Although semantics are important in the field of biometrics, it is not influencing the sensometrics 
approach of identifying the used pen digitizer presented in this paper. Therefore, a detailed understanding of the impact 
of different semantics is not required in the context of sensometrics and we confine to explaining the important aspects 
for this paper.    

3. Pen Digitizers and their Physical Characteristics 
As described in detail in [2], pen digitizers have certain characteristic features given by their physical parameters. Thus, 
a general classification can easily be realized by analyzing these physical parameters.  
 
The first physical parameter is the spatial resolution measured in lines per inch (lpi). It indicates the resolution of the 
horizontal and vertical pen position signal. For some digitizers the spatial resolution is limited by the screen resolution, 
while for others, in particular those, where the digitizer resolution is identical to its screen resolution, it is impacted by 
the digitizer’s basic physical design. For a third class of digitizers, the spatial resolution varies depending on the device 
driver and achieves a higher resolution. Consequently, three categories regarding the spatial resolution can be outlined 
according to [2]: low (< 100 lpi), medium (100 lpi ≤ resolution < 2000 lpi) and high resolution (≥ 2000 lpi). A second 
physical parameter indicates the pressure signal quantization based on the signal dimensionality. The pressure signal 
quantization refers to a digitizer’s ability of capturing the amount of pressure to its surface generated during a users 
writing sequence. Two categories are differentiated, a binary pressure quantization (PenUp/PenDown) and pressure 
quantization > 2. A third physical parameter indicates the pen angle signals azimuth and altitude which are either 
provided by a digitizer or not. A detailed description of this classification can be found in [2]. 

4. Identifying Pen Digitizers by Feature Analysis 
In this section, we introduce the basic procedure for identifying pen digitizers. Thus, we first outline the parts of the 
procedure. Further, the required parameters for feature extraction are described into detail in order to finally present the 
used feature vector as the fundamental contribution for our decision tree model to classify pen digitizers. 

SPIE-IS&T/ Vol. 6507  65070I-3



 

 

4.1. Identifying Pen Digitizers – Procedure 
After data acquisition, certain techniques are applied in preprocessing in order to extract particular features. We 
differentiate between two main steps: First, the analyzing and following the testing. The idea of the general approach 
can be introduced as follows: First, the data is analyzed in order to find the decision tree model as the basis for 
classification. We then test the classification with our database by matching extracted features of specific devices to the 
decision tree model. Thus, a decision can be made and as the outcome the device the tested sample is captured with is 
classified to one of the predefined output classes (OPC). The complete procedure can be followed in Figure 2. 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 2. Procedure of identifying pen digitizers  

4.2. Data Acquisition: Sampled Data Parameters and Input Vector 
As generally introduced in section 2, certain parameters are determined for each sampling point. In our tests the 
following particular parameters are considered: x-position x(t), y-position y(t), old x-position  x_old(t), old y-position  
y_old(t), timestamp t in ms, pressure p(t), azimuth Θ (t), and  altitude Φ(t). According to its resolution, positive integers 
are returned by the corresponding device. The old x-position and y-position are the coordinates of the previous sampling 
point. For the first sampling point this is denoted by (-1,-1). The timestamp t indicates the time in milliseconds at which 
a contact is made at a particular (x, y) coordinate. The timer starts with a value of 0 for the starting of a writing sequence 
and is measured in milliseconds. Thus, the timestamp value is always relative to a sample. Most pen digitizers have 
different pressure quantization levels: no pressure (0), 128, 256, 512, or 1024.  
 
The described parameters can be summarized in a so-called input vector I as presented in equation 1. 
 

I = { Sample Id , Event Id,  x(t), y(t), x_old(t), y_old(t), t, p(t), Θ (t), Φ(t)}   (1) 
 
Sample_Id and Event_Id denote a unique identifier tuple for a connected handwriting sequence within our database. 
Since feature vectors are calculated for each sample, Sample Id, which is unique to each sample, is used to discriminate 
the samples while Event Id refers to the semantics. The coordinates (x(t),y(t)) and (x_old(t),y_old(t)) are directly 
retrieved from the database. Starting points as well as pen-up and pen-down positions are identified by “-1” at (x(t),y(t)) 
and ((x_old(t),y_old(t)) coordinates respectively. Thus, a combination of ((x_old(t),y_old(t)) coordinate couples is 
considered for calculating the features. 

4.3. Preprocessing and Feature Extraction  
Preprocessing refers to modifying the raw data in order to obtain normalized data points for subsequent processing. 
Hereby, aberrant and unwanted data is removed. Because users of pen digitizers usually do not continuously write on 
the screen, but interrupt their flow of writing by lifting the pen, the total time of writing is measured by excluding the 
time of interruptions within preprocessing. Thus, only the time the pen actually hits the device is considered and all 
values above a defined threshold are removed. This preprocessing is necessary for calculation of efficient feature 
vectors. Further, all time difference values above 100 milliseconds are generally eliminated in preprocessing. This is 
motivated by the observation that most devices do not have sampling rates less than 10 Hz leading us to ignore the 
higher values. 
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After preprocessing, the feature extraction is performed. Particular features are extracted in order to identify crucial 
patterns of a sample, which indicate the particular device used for capturing the sample. These features will be described 
in detail in the coming subsections. In summary, the feature set is composed of attributes altitude type AT, pressure level 
type PL, pressure difference value PD, time difference value TD, and average sampling rate AV. In addition, the 
statistical feature maximum pressure max(p(t)) needs to be calculated in order to determine the attributes of the feature 
vector. Later in section 4.4., we will outline how a feature vector based on these features is composed. 

4.3.1. Altitude type (AT) 
Based on the samples in our database, 3 different types of altitude values can be differentiated, a zero altitude value for 
low end devices, a constant value of 900 for medium level devices and a variable altitude value for high level devices. 
These three values {0, 900, Variable} are mapped to {1,2,3} for decision. 

4.3.2. Pressure Level Type (PL) 
The pressure is one of the attributes returned by the device. The number of pressure levels a device can support is 
calculated by using maximum pressure max(p(t)) of a sample. High end devices generally support 1024 pressure levels 
while some devices support a variety of 512, 256, 128 pressure levels, and other devices don’t calculate pressure at all. 
These values are mapped to {1,2,3,4,5} for decision. 

4.3.3. Maximum Pressure max(p(t)) 
Based on the pressure value detected for each sample point, the maximum pressure value max(p(t)) is calculated for 
each sample in order to determine the number of pressure levels a device supports. From the data it is observed that for a 
device having n pressure levels, the maximum pressure value of a particular sample is typically ≥ N/2. For example, if a 
device can detect 512 pressure levels then the maximum pressure of any sample of that device is typically ≥ 256. Hence, 
half the maximum pressure value is taken as a threshold. 

4.3.4. Pressure Difference Value (PD) 
Assuming, pressure values of two subsequent sample points do not show a high degree of variation, the pressure 
difference between subsequent sample points is considered as an attribute in the feature vector for detecting the device 
type. By doing so, device specific patterns can be determined. A pressure difference value is calculated as presented in 
equation 2. 
     PD = |p(t) – p(t+1)|      (2) 
 
Considering the consecutive pressure difference values of all tested samples, three different pressure difference patterns 
could be identified, as presented in Table 1, Table 2, and Table 3. Each row indicates a sample, and the values represent 
a histogram of pressure difference values of consecutive sample points. For example, pressure difference value 0 is 
occurring 33 times in the first sample in table 1, while in table 2 and table 3 pressure difference value 0 is occurring 122 
times for the first sample. Due to space constraints only the number of pressure difference values from 0 up to 7 
subsequent sample points is shown. In the pattern descriptions “NNNNNNNN”, “N0N0N0N0”, and “NX00NX00”, N 
denotes significant pressure differences occurring, 0 denotes no pressure differences occurring, and X denotes minor 
pressure differences occurring with ≈ N/X ≥ 10.  
 
             Table. 1. Pattern1: NNNNNNNN   Table. 2. Pattern 2: N0N0N0N0         Table. 3. Pattern 3: NX00NX00 

 
In pattern1 (NNNNNNNN), all pressure difference values can be determined, which indicates a device’s raised pressure 
sensitivity. In pattern 2 (N0N0N0N0), exclusively even and no odd differences can be obtained. Pattern 3 (NX00NX00) 
refers to a specific sequence the determination of pressure difference values maintains: The number of the obtained 

0 1 2 3 4 5 6 7
33 27 22 23 19 12 13 5
18 9 20 6 6 17 5 2
211 8 16 11 3 10 7 4
216 17 9 6 5 12 4 2

0 1 2 3 4 5 6 7
122 0 81 0 93 0 77 0
94 0 77 0 68 0 71 0
54 0 72 0 54 0 56 0
67 0 55 0 55 0 43 0

0 1 2 3 4 5 6 7
122 1 0 0 106 4 0 0
190 2 0 0 110 3 0 0
226 1 0 0 113 10 0 0
418 1 0 0 82 9 0 0
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pressure difference value 0 is quite high, while the following pressure difference value 1 is relatively low in comparison 
to its predecessor. The third and fourth difference values are zero. This sequence is repeating for the whole sample. In 
other words, this pattern indicates only few pressure difference values can be determined which leads to the assumption 
that only low resolution devices show this pattern. For the decision of the device these three patterns {NNNNNNNN, 
N0N0N0N0, NX00NX00} are mapped to {1,2,3} for decision. 

4.3.5. Time Difference Value TD  
Similar to pressure difference, the time differences between all subsequent sample points are determined. Because of the 
fact, that the shorter the time period between sampling two subsequent points, the higher the sampling rate, we assume 
determing the time difference values of a sample may characterize the used device. We observed that most devices do 
not have sampling rates less than 10 Hz. Therefore, we choose to ignore the higher values. Thus, in preprocessing all 
time difference values above 100 milliseconds are generally eliminated. After calculating histograms of the time 
difference values, similar as it has been done for the pressure difference values, specific patterns could be detected. A lot 
of different time difference patterns could be acquired. We assigned six patterns as the most crucial ones for identifying 
the used pen digitizer. Hereby, the distribution of the values determines the pattern. Due to space constraints we only 
include two exemplary histograms of the time difference values (Table 4 and Table 5) in this paper and further but 
summarize all patterns. 
 

Table. 4. Exemplary pattern 1: (7, 8, 15, 16)   Table. 5. Exemplary pattern 2: (5, 10)  

   
Before summarizing the patterns, the term “mode” needs to be determined. We define a “mode” as the specific time 
difference value of the general time interval (time difference) between two subsequent sample points n-1 and n of a 
sample. For one sample a time difference value can occur more than just once. Each column indicates a mode, while 
each row refers to a sample. Mode 7 for example is the time difference value 7, which in table 4 occurs 28 times for the 
first sample and in table 5 does not occur at all (0) for all samples. Depending on the specific sample, a mode can have 
different values. Depending on their physical parameters, pen digitizers show specific characterizing modes which can 
be summarized as patterns.  
  
In pattern a, all modes n are characterizing, which indicates that the time difference values are distributed throughout the 
whole sample. This mainly occurs in high end devices. In pattern b, the distribution of time difference values is 
characterizing in modes 7, 8, 15, and 16. In pattern c, modes 5 and 10 are the characterizing ones. Most of zero pressure 
devices show this pattern. In pattern d, modes 2 and 3 are characterizing. In pattern e, modes 3, 4, 5, and 10 are 
characterizing. In pattern f, modes 12, 13, and 14 are characterizing. Finally, these different patterns are mapped to the 
constant numeric attributes {1,2,3,4,5,6} for the decision. 

4.3.6. Average Time Period AV 
The average time period is the mean time period between any two consecutive sample points of a sample. Because of 
the time period of two subsequent sample points does not remain constant in some devices, it can hardly be considered 
as a parameter for identifying the used pen digitizer. Therefore, we calculate an average of all these time periods. The 
average time period is determined as it is presented in equation 3. 
 

     ∑
−

=
+ −=

1

1
1 )()(1 N

i
ii xtxt

N
AV      (3) 

  

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 0 0 0 0 0 28 110 0 0 0 0 0 0 32 54
0 0 0 0 0 0 0 18 128 0 0 0 0 0 0 43 47
0 0 0 0 0 0 0 35 111 0 2 1 0 0 0 24 62
0 0 0 0 0 0 0 13 105 0 0 0 0 0 0 37 37
0 0 0 0 0 0 0 31 89 0 0 0 0 0 0 18 55
0 0 0 0 0 2 1 18 116 0 0 0 0 0 0 38 46
0 0 0 0 0 0 0 25 111 0 0 0 0 0 0 31 52
0 0 0 0 0 3 0 13 91 0 0 0 0 0 0 31 35

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
0 0 5 0 0 32 0 0 0 0 37 0 0 0 0 0 0
0 2 4 0 0 26 0 0 0 0 27 1 0 0 0 0 0
0 2 4 0 0 35 1 0 0 0 38 0 0 0 0 0 0
0 2 4 0 0 30 0 0 0 0 30 1 0 0 0 0 0
0 2 5 0 0 26 0 0 0 0 28 1 0 0 0 0 0
0 0 4 0 0 30 0 0 0 0 30 1 0 0 0 0 0
0 2 4 0 0 44 2 0 0 0 46 1 0 0 0 0 0
0 2 4 0 0 90 0 0 0 0 94 0 0 0 0 0 0
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The inverse of the average time period results in the average sampling rate of the device. Most devices have a sampling 
rate of 100, while some devices have a sampling rate of 125, and others have a sampling rate of 400.  We consider two 
main average time periods: AV=1 indicates 5.5<AV<8.5, while AV=2 refers to 8.5<AV<11. Hence, the average time 
periods are mapped to {1,2} for the decision. 

4.4. Feature Vector 
Considering all explained features, a feature vector is formally described as presented in equation 4. It contains the 
attributes altitude type AT, pressure level type PL, pressure difference value PD, time difference value TD, and average 
sampling rate AV. 

F = {AT, PL, PD, TD, AV}      (4) 
 
Based on the explanations of the attributes presented in subsection 4.3, the attributes of the feature vector can have the 
following states, where 0 is added to capture unexpected values or outliers: 
 

AL  Altitude     {0, 1, 2, 3}   
PL    Pressure level     {0, 1, 2, 3, 4, 5}  
PD  Pressure difference   {0, 1, 2, 3}  
TD  Time difference          {0, 1, 2, 3, 4, 5, 6}  
AV  Average      {0, 1, 2}    

 
This feature vector containing the extracted features is then used in matching to compare a particular sample with the 
samples in the relevant data base in order to attribute the used device to a predefined output class (OPC).  

5. Test Environment and Test Set, Test Methodology and Test Goals 
In this section, we introduce the test environment and test set used for our studies. We further describe our test 
methodology with respect to the decision tree based classification and the resulting output classes. Further, test goals for 
our evaluation are defined at the end of this section. 

5.1. Test Environment and Test Set 
As the test environment we used PlataSign, which is a software tool developed by our research group in order to 
evaluate biometric user authentication systems, in particular those systems based on handwriting. Thus, we have been 
able to access already existing databases collected for earlier research tasks in the field of biometrics as presented in [2]. 
Because of this, a large test set of around 40,000 samples out of a number of data sets could be considered for testing. 
For the tests, presented in this paper, we consider samples taken with 23 different pen digitizers. Further, for each 
digitizer type, we have divided the database into two disjoint partitions: first, the analyzing partition for development of 
the decision tree model and the output classes (OPC) and second, a disjoint testing partitions for our subsequent 
evaluation. Partitioning of data into these two sets has been performed in a manner that for each digitizer type an equal 
number of samples is represented in either of the sets. 

5.2. Test Methodology and Test Goals 
The test methodology is based on the procedure of identifying pen-digitizers based on feature vectors extracted from the 
digitizer signals as described in section 4, which are classified by a decision tree. For each of the decision nodes of the 
tree, we have derived the decision criteria based on an a-priori analysis for each digitizer category of the analysis portion 
of the database. Figure 3 presents the resulting decision tree. 
 
The classification in the tree is performed for a given feature vector in a root-to-leaf manner. Initially at root level, any 
feature vector represents the total number of 23 candidate devices a specific device potentially can be classified to. At 
this first level, the first attribute (component AL, altitude) of the feature vector is applied as classification criterion into 
the three sub-sets Set A, B and C. On the second level, classification is done based on the attribute for pressure level 
(PL), then in the third level for pressure difference (PD), in the fourth step for time difference (TD) and finally in the 
lowest level (if applicable for a given feature vector) for average time period (AV). At the end of the classification 
process, the actual feature can be allocated to one output class. Note that each of the output classes may represent 
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multiple digitizer types and further, pen-digitizers may be attributed to more than one output class. The actual output 
classes we achieved during the analysis phase will be discussed in the following subsection. 
 
This test methodology of building up a decision tree model, predefining output classes and applying a sequence of 
parameters in order to enforce a decision in each step of the tree is our initial approach to identify a pen digitizer. 

 
Fig. 3. Decision tree for the differentiation of 19 output classes (OPC) 

5.3. Output Classes OPC 
After the design of the decision tree based on the feature set components, we have determined the output classes from 
the analyzing set. For this purpose, we have performed classification for each of the approximately 20,000 samples in 
the analyzing partition of our database and registered, which digitizers have been classified in which of the 19 OPCs. 
 

Table. 6. Output Classes (OPC) 

Total Devices

Set CSet BSet A

Set D Set E

Set F

Set G Set H Set I

OPC 1

OPC 2

OPC 4 OPC 5 OPC 7

OPC 8

OPC 6

OPC 3

OPC 9

OPC 10

OPC 12

OPC 13 OPC 14

OPC 17 OPC 18

OPC 11 OPC 15 OPC 16

OPC 19

Altitude AL 

Pressure Level PL

Pressure Difference PD

Time Difference TD

Average AV

AL=1 AL=2 AL=3

PL=2

PD=1 PD=3

PL=4 PL=5

PD=2

TD=6 TD=5 
or 6

TD=2 TD=3 TD=4
TD=1

TD=4

TD=2
TD=3

TD=5

TD=3TD=2 TD=1 or 5 or 6

AV=1 AV=2 AV=1 AV=2 AV=1 AV=2

Total Devices

Set CSet BSet A

Set D Set E

Set F

Set G Set H Set I

OPC 1OPC 1

OPC 2OPC 2

OPC 4OPC 4 OPC 5OPC 5 OPC 7OPC 7

OPC 8OPC 8

OPC 6OPC 6

OPC 3OPC 3

OPC 9OPC 9

OPC 10OPC 10

OPC 12OPC 12

OPC 13OPC 13 OPC 14OPC 14

OPC 17OPC 17 OPC 18OPC 18

OPC 11OPC 11 OPC 15OPC 15 OPC 16OPC 16

OPC 19OPC 19

Altitude AL 

Pressure Level PL

Pressure Difference PD

Time Difference TD

Average AV

AL=1 AL=2 AL=3

PL=2

PD=1 PD=3

PL=4 PL=5

PD=2

TD=6 TD=5 
or 6

TD=2 TD=3 TD=4
TD=1

TD=4

TD=2
TD=3

TD=5

TD=3TD=2 TD=1 or 5 or 6

AV=1 AV=2 AV=1 AV=2 AV=1 AV=2

Output Classes Pen Digitizers
OPC 1 Aiptec 8000
OPC 2 Logitech IO
OPC 3 StepOver+Pad, StepOver+Pad Inkpen, StepOver blueM Pad
OPC 4 Wacom USB Screen
OPC 5 Intuos 2 Screen,Volito 2 Screen
OPC 6 Palm, Touch Eizo, Wacom Screen, Wacom USB Screen
OPC 7 Stepover No Pressure
OPC 8 Cintiq15x,Wacom USB No Angle, Toshiba
OPC 9 Wacom USB NO Angle
OPC 10 Toshiba
OPC 11 Wacom Volito
OPC 12 Wacom Volito
OPC 13 Toshiba , Pocket PC
OPC 14 Touch, Wacom USB NO Angle
OPC 15 Toshiba
OPC 16 Touch
OPC 17 Wacom USB, Wacom, Intuos 2 No Angle, Intuos
OPC 18 Intuos 2 No Angle, Intuos 2 Ink Pen, Wacom Intuos 2
OPC 19 Wacom USB, Wacom Intuos 2
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The resulting memberships of individual digitizers in OPCs are shown in Table 6. Note that some output classes contain 
more than one device and some devices are represented in multiple OPCs. Thus, with our decision tree approach, we 
can so far partially identify individual digitizers, whereas in some cases only groups of tablets can be discriminated.  

5.4. Test Goals 
The goal of our experimental evaluation is to determine, to which degree a correct classification based on the decision 
tree model introduced in section 5.2 into the 19 output classes, as identified in the previous subsection, can be achieved. 
To do so, we have applied our classification scheme to the second portion of the test database, performed a second 
classification for approximately 20,000 samples, and registered the resulting OPC as well as the original tablet types. 
Test measurements in our experiments have been the Correct Identification and False Identification rates. The first rate 
denotes the ratio of number of correct classification and the total number of samples for each tablet category, whereas 
the False Identification rate represents the ratio between incorrect classifications for a given category and its total 
number of samples. In case of non-classifications, we further measure the number of non-classifications (i.e. due to 
erroneous program execution) in relation of the total number of samples in each category. The discussion of these 
measurements should allow for a first assessment to which degree the proposed scheme can perform robust 
identification of devices. 

6. Experimental Results 
Following the described test methodology in section 5 and the presented concept in section 4, the results of our 
experiments are presented as a matrix in Table 7. The table shows the comparison of the 23 pen digitizers in the rows 
and the observed classifications into 19 output classes in the columns. OPC0 is an additional output class and contains 
the outliers, i.e. non-classified samples which occurred due to program execution errors in our prototypical evaluation. 
Since the relative numbers of such non-classification occurrences is relatively low, we assume that they do not impact 
the overall tendency observed. Numbers printed in bold indicate absolute numbers of Correct Identifications, whereas 
italic numbers refer to the False Identifications of devices. Column “Total” summarizes the total number of tested 
devices for each device type while column “Average” presents the average positive identification rate in percent. In 
Table 8, a summarization of Correct Identification, False Identification and Non Classification ratios for each digitizer 
category is shown. 
 

Table. 7. Distribution of devices in output groups after applying the feature vector 

 
 
 
 
 
 
 

Device/Output OPC0 OPC1 OPC2 OPC3 OPC4 OPC5 OPC6 OPC7 OPC8 OPC9 OPC10 OPC11 OPC12 OPC13 OPC14 OPC15 OPC16 OPC17 OPC18 OPC19 Total Average
Toshiba Portégé Tablet-PC 87 1062 1421 55 573 41 3239 95.62%
Wacom Cintiq 15 117 31 10221 35 70 10474 95.11%
Wacom Intuos 2 252 1619 10 7 2364 787 1589 6628 71.51%
PocketPC 5 5 100%
Logitech IO-Pen 29 3888 3917 99.26%
Wacom 74 959 1033 92.84%
Palm 1512 1512 100%
Wacom USB 7 1866 1222 260 3355 44.17%
Touch 27 170 1702 640 18 504 40 8 3109 36.8%
Touch EIZO 2050 2050 100%
Wacom Volito 24 146 1216 1386 98.27%
Aiptec Hyperpen 8000 45 33 9 87 51.72%
Wacom Intuos 2 Inkpen 214 214 100%
StepOver +Pad 210 210 100%
StepOver +Pad Inkpen 110 110 100%
StepOver blueM Pad 386 386 100%
Wacom SCREEN 158 158 100%
Wacom USB SCREEN 8 202 2986 3196 99.75%
Wacom USB NO ANGLE 42 6 23 71 100%
Wacom Intuos 2 SCREEN 14 14 100%
Wacom Intuos 2 NO ANGLE 6 20 11 37 16.22%
Wacom Volito SCREEN 4 4 100%
StepOver +Pad NO PRESS 1090 1090 100%

87%
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Table. 8. Devices in regard to their true positive and false positive determination results 

 
In general, as it can be seen in column OPC0, relatively few non-classifications have been observed all together. 12 out 
of the 23 tested pen digitizers (52.17%) could be correctly identified in all cases (Correct Identification rate of 100%). 
Another 3 tested pen digitizers (Wacom USB SCREEN, Wacom, and Logitech IO-Pen) are identified with almost 100% 
accuracy. Here, only non-classification outliers but no false identifications negatively influenced the result (i.e. False 
Identification Rate yields 0). Depending on the total number of tested pen digitizers of a specific type and the 
corresponding number of outliers, the result ranges between 92.84% and 99.75%. Based on approximately 40,000 tested 
samples, an average identification rate of 87% could be achieved by the presented concept across all tablets. 
 
Wacom USB, Touch, and Aiptec Hyperpen 8000 seem to be problematic, since they are only providing a low accuracy 
of identification in the range of 36.80% - 51.72%. In other words, at least every second device could not be identified. A 
possible explanation for this phenomenon could be the pressure resolution. These devices are supposed to provide a 
maximum pressure quantization of 512 levels (Aiptec Hyperpen 8000) or 1024 levels (Wacom USB, Touch). Regarding 
Aiptec Hyperpen 8000, a pressure quantization less than half the maximum pressure quantization of 512 (< 256) can be 
observed in some samples. Regarding Wacom USB and Touch, some samples in the test set provide a zero pressure 
quantization. Apparently for these two tablet categories, an erroneous data acquisition resulted in inconsistent data. With 
respect to the low identification rates, extracting such samples would significantly increase the identification accuracy.    
 
Furthermore, the Wacom Intuos 2 NO ANGEL device shows a poor accuracy of identification with only 16.22%. Here, 
no angle information is supposed to be included in the samples, but some samples contain a detected angle value 
nevertheless. Neglecting theses samples, would also improve the identification accuracy. 
 
Generally, all StepOver devices seem to have a total accurate identification rate of 100%. Three of these devices (+Pad, 
+Pad Inkpen and blueM Pad) belong to the same output group which indicates an impossible discrimination of StepOver 
devices by using the presented approach, which fits to our expectations, as all three tablets use the same sensor 
technology. StepOver +Pad NO PRESS digitizers are also based on this technology, but samples in this category have 
been collected neglecting the pressure information in the signals. This category has also shown 100% correct 
identification rates, but has been classified in a separate output class, OPC7. 
Finally, other devices with zero pressure quantization and low spatial resultion such as Palm, Touch Eizo, and Wacom 
USB SCREEN cannot be differentiated. Therefore, considering further statistical parameters and enhancing the 
presented approach is subjective of ongoing research. 
 
 

Device Correct Identification Ratio False Identification Ratio Non Classification Ratio
Palm 1 0 0
PocketPC 1 0 0
StepOver +Pad 1 0 0
StepOver +Pad Inkpen 1 0 0
StepOver +Pad NO PRESS 1 0 0
StepOver blueM Pad 1 0 0
Touch EIZO 1 0 0
Wacom Intuos 2 Inkpen 1 0 0
Wacom Intuos 2 SCREEN 1 0 0
Wacom SCREEN 1 0 0
Wacom USB NO ANGLE 1 0 0
Wacom Volito SCREEN 1 0 0
Logitech IO-Pen 0.992596375 0 0.007403625
Wacom Volito 0.982683983 0.017316017 0
Wacom Cintiq 15 0.975844949 0.012984533 0.011170527
Toshiba Portégé Tablet-PC 0.956159308 0.016980549 0.026860143
Wacom 0.928363988 0 0.071636012
Wacom USB SCREEN 0.917496871 0 0.82503129
Wacom Intuos 2 0.715147858 0.246831623 0.038020519
Aiptec Hyperpen 8000 0.517241379 0.482758621 0
Wacom USB 0.441728763 0.556184799 0.002086438
Touch 0.367963976 0.623351560 0.008684464
Wacom Intuos 2 NO ANGLE 0.162162162 0.837837838 0
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7. Conclusion and Future Work 
In this paper, a new approach has been presented to identify pen-based digitizer devices. This has been done with the 
background of introducing the new research area of sensometrics, the connector of biometrics and forensics. From 
approximately 40,000 handwritten samples taken from 23 different digitizer tablets, specific features for classification 
have been extracted and a feature vector classification system based on a decision tree model has been implemented and 
experimentally evaluated. The decision tree classification resulted in 19 output groups for the 23 devices.  
 
For each digitizer type, we have divided the database into two disjoint partitions: the analyzing partition for 
development of the decision tree model and the output classes (OPC) and a disjoint testing partition for our subsequent 
evaluation. Thus, an equal number of samples is represented in either of the sets for each digitizer type. To our 
knowledge this approach constitutes the first approach to identify a pen digitizer, i.e. to apply sensometric schemes to 
this category of sensors.  
 
In our evaluation we have shown that 12 out of the 23 devices could be identified with 100% accuracy and another six 
showed correct identification rates of over 90%. However, as already be outlined in section 6, two major restrictions of 
your concept have been observed during testing: First, pen digitizers with the same sensor technology could not be 
uniquely identified. Second, all low resolution devices resulted in high false identification rates. But in the context of 
mobile multimedia those low resolution devices are playing a major role as they are mainly applied in that area. 
 
Taking this as a basis for future and ongoing research we put much effort in enhancing the existing decision tree model 
by testing statistical classification methods in comparison to our developed decision tree approach. Additionally, we are 
focussing on finding further features to also uniquely identify different instances of devices having identical sensor 
technology, in analogy to the results reported for CCD (Charge Coupled Devices) in [3] or [4].   
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